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Abstract
Zeta function regularization techniques are optimally suited for the calculation
of the contribution of fluctuations of the vacuum energy of the quantum
fields pervading the universe to the cosmological constant (cc). The order
of magnitude calculations of the absolute contributions of all fields is known
to lead to a value which is off by over 120 orders, as compared with the results
obtained from observational fits, known as the new cc problem. This is difficult
to solve and many authors still stick to the old problem to try to prove that
basically its value is zero with some perturbations thereof leading to the (small)
observed result (Burgess C P et al 2006 Preprints hep-th/0606020, 0510123,
Padmanabhan T 2006 Preprint gr-qc/0606061, etc). We also address this issue
in a somewhat similar way, by considering the additional contributions to the cc
that may come from the possibly non-trivial topology of space and from specific
boundary conditions imposed on braneworld and other seemingly reasonable
models that are being considered in the literature (mainly with other purposes
too)—kind of a Casimir effect at cosmological scale. If the ground value of the
cc would be indeed zero, we would then be left with this perturbative quantity
coming from the topology or BCs. We review the status of this approach, in
particular the fact that the computed number is of the right order of magnitude
(and has the right sign, what is also non-trivial) when compared with the
observational value, in some of the aforementioned examples.
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1. Introduction

Regularization and renormalization procedures are essential issues in contemporary physics
[1]. Among the different methods, zeta function regularization—obtained by analytic
continuation in the complex plane of the zeta function of the relevant physical operator in each
case—is the most beautiful. Use of this procedure yields, for instance, the vacuum energy
corresponding to a quantum physical system, with constraints of very different nature. The
case of moving boundaries seems to present quite severe difficulties, though some promising
approach in order to deal with them has been issued recently [2]. Assume the Hamiltonian
operator, H, of our quantum system has a spectral decomposition of the form (think as always,
as simplest case, in a quantum harmonic oscillator): {λi, ϕi}i∈I , I being some set of indices
(which can be discrete, continuous, mixed, multiple, . . .). Then, the quantum vacuum energy
is obtained as follows [3]:

E/µ =
∑
i∈I

〈ϕi, (H/µ)ϕi〉 = Trζ H/µ =
∑
i∈I

(λi/µ)−s

∣∣∣∣∣
s=−1

= ζH/µ(−1), (1)

where ζA is the zeta function corresponding to an operator A, and the equalities are in the
sense of analytic continuation (since, generically, the Hamiltonian operator will not be of
the trace class).2 The formal sum over the eigenvalues is usually ill defined and the last
step involves analytic continuation, inherent with the definition of the zeta function itself.
Also, an unavoidable renormalization parameter, µ, with dimensions of mass appears in the
process, in order to render the eigenvalues of the resulting operator dimensionless, so that
the corresponding zeta function can actually be defined. For the lack of space, we shall
not discuss those important details here, which are just at the starting point of the whole
renormalization procedure. The mathematically simple-looking relations above involve deep
physical concepts, no wonder that understanding them took several decades in the recent
history of quantum field theory.

2. On the zero-point energy and the Casimir force

In an ordinary QFT, one cannot give a meaning to the absolute value of the zero-point energy,
and any physically measurable effect comes as an energy difference between two situations,
such as a quantum field in curved space as compared with the same field in flat space, or
one satisfying boundary condition (BC) on some surface as compared with the same in its
absence, etc. This difference is the Casimir energy: EC = EBC

0 − E0 = 1
2 (tr HBC − tr H).

But here a problem appears. Imposing mathematical boundary conditions (BCs) on physical
quantum fields turns out to be a highly non-trivial act. This was discussed in detail in a paper
by Deutsch and Candelas [5]. These authors quantized them and scalar fields in the region
near an arbitrary smooth boundary, and calculated the renormalized vacuum expectation value
of the stress–energy tensor, to find out that the energy density diverges as the boundary is
approached. Therefore, regularization and renormalization did not seem to cure the problem
with infinities in this case and an infinite physical energy was obtained if the mathematical
BCs were to be fulfilled. However, the authors argued that surfaces have non-zero depth, and
its value could be taken as a handy dimensional cut-off in order to regularize the infinities. Just
two years after Deutsch and Candelas’ work, Symanzik carried out a rigorous analysis of QFT
in the presence of boundaries [6]. Prescribing the value of the quantum field on a boundary

2 The reader should be warned that this ζ -trace is actually no trace in the usual sense. In particular, it is highly
non-linear, as often explained by the author [4]. Some colleagues are unaware of this fact, which has lead to serious
mistakes and erroneous conclusions published sometimes in top journals.
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means using the Schrödinger representation, and Symanzik was able to show rigorously that
such representation exists to all orders in the perturbative expansion. He also showed that the
field operator being diagonalized in a smooth hypersurface differs from the usual renormalized
one by a factor that diverges logarithmically when the distance to the hypersurface goes to zero.
This requires a precise limiting procedure and point splitting to be applied. In any case, the
issue was proven by him to be perfectly meaningful within the domains of renormalized QFT.
In this case the BCs and the hypersurfaces themselves were treated at a pure mathematical
level (zero depth) by using Dirac delta functions.

Recently, a new approach to the problem has been postulated [7]. BCs on a field, φ, are
enforced on a surface, S, by introducing a scalar potential, σ , of Gaussian shape living on and
near the surface. When the Gaussian becomes a delta function, the BCs (Dirichlet here) are
enforced: the delta-shaped potential kills all the modes of φ at the surface. For the rest, the
quantum system undergoes a full-fledged QFT renormalization, as in the case of Symanzik’s
approach. The results obtained confirm those of [5] in the several models studied albeit they
do not seem to agree with those of [6]. They seem to be also in contradiction with those
quoted in the usual textbooks and review articles dealing with the Casimir effect [8], where
no infinite energy density when approaching the Casimir plates has been reported.

3. On the topology and curvature of space

The Friedmann–Robertson–Walker (FRW) model, which can be derived as the only family of
solutions to Einstein’s equations compatible with the assumptions of homogeneity and isotropy
of space, is the generally accepted model of the cosmos. But the FRW is a family with a free
parameter, k, the curvature, that can be either positive, negative or zero (the flat or Euclidean
case). This curvature, or equivalently the curvature radius, R, is not fixed by the theory and
should be matched with cosmological observations. Moreover, the FRW model, and Einstein’s
equations themselves, can only provide local properties, not global ones, so they cannot tell
about the overall topology of our world: is it closed or open, finite or infinite? Even being
quite clear that it is, in any case, extremely large—and possibly the human species will never
reach more than an infinitesimally tiny part of it— the question is very appealing to any (note
that this discussion concerns only three-dimensional space curvature and topology, time will
not be involved).

3.1. On the curvature

Serious attempts to measure the possible curvature of the space we live in go back to Gauss,
who measured the sum of the three angles of a big triangle with vertices on the picks of three
far away mountains (Brocken, Inselberg and Hohenhagen). He was looking for evidence that
the geometry of space is non-Euclidean. The idea was brilliant, but condemned to failure:
one needs a much bigger triangle to try to find the possible non-zero curvature of space.
Now cosmologists have recently measured the curvature radius R by using the largest triangle
available, namely one with us at one vertex and with the other two on the hot opaque surface
of the ionized hydrogen that delimits our visible universe and emits the CMB radiation (some
3–4 ×105 years after the big bang) [9]. The CMB maps exhibit hot and cold spots. It can be
shown that the characteristic spot angular size corresponds to the first peak of the temperature
power spectrum, which is reached for an angular size of .5◦ (approximately that subtended
by the moon) if space is flat. If it has a positive curvature, spots should be larger (with
a corresponding displacement of the position of the peak) and correspondingly smaller for
negative curvature. The joint analysis of the considerable amount of data obtained during the
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last years by balloon experiments (BOOMERanG, MAXIMA, DASI) [10, 11], combined with
galaxy clustering data, produced a lower bound for |R| > 20h−1 Gpc, i.e. twice as large as the
radius of the observable universe of about RU � 9h−1 Gpc (h is the reduced Hubble constant).

3.2. On the topology

Let us repeat that GR does not prescribe the topology of the universe, or its being finite or
not, and the universe could perfectly be flat and finite. The simplest non-trivial model from
the theoretical viewpoint is the toroidal topology. Traces for this and more elaborated ones,
as negatively curved but compact spaces, have been profusely investigated, and some circles
in the sky with near identical temperature patterns were identified [12]. And yet more papers
appear from time to time proposing a new topology [13]. However, to summarize all these
efforts and the observational situation, and once the numerical data are interpreted without
bias (what sometimes was not the case and led to erroneous conclusions), it seems at present
that available data point towards a very large (we may call it infinite) flat space.

4. Vacuum energy fluctuations and the cosmological constant

The issue of the cc has got renewed thrust from the observational evidence of an acceleration in
the expansion of our universe, initially reported by two different groups [14]. There was some
controversy on the reliability of the results obtained from those observations and on its precise
interpretation, by a number of different reasons. Anyway, after new data have been gathered,
there is now consensus among the community of cosmologists that, in fact, an acceleration
is there, and that it has the order of magnitude obtained in the above mentioned observations
[15–17]. As a consequence, many theoreticians have urged to try to explain this fact, and also
to try to reproduce the precise value of the cc coming from these observations [18–20].

Now, as crudely stated by Weinberg [21], it is even more difficult to explain why the cc
is so small but non-zero than to build the theoretical models where it exactly vanishes [22].
Rigorous calculations performed in quantum field theory on the vacuum energy density, ρV ,
corresponding to quantum fluctuations of the fields we observe in nature, lead to values that
are over 120 orders of magnitude in excess of those allowed by observations of the spacetime
around us. Energy always gravitates, therefore the energy density of the vacuum, more
precisely, the vacuum expectation value of the stress–energy tensor 〈Tµν〉 ≡ −Egµν appears
on the rhs of Einstein’s equations:

Rµν − 1
2gµνR = −8πG(T̃µν − Egµν). (2)

It affects cosmology: T̃µν contains excitations above the vacuum and is equivalent to a cc
λ = 8πGE . Recent observations yield [23]

λobs = (2.14 ± 0.13 × 10−3 eV)4 ∼ 4.32 × 10−9 erg cm−3.

It is an old idea that the cc gets contributions from zero-point fluctuations [24]:

E0 = h̄c

2

∑
n

ωn, ω = k2 + m2/h̄2, k = 2π/λ. (3)

Evaluating in a box and putting a cut-off at maximum kmax corresponding to reliable QFT
physics (e.g., the Planck energy)

ρ ∼ h̄k4
Planck

16π2
∼ 10123ρobs. (4)
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Assuming one will be able to prove (in the future) that the ground value of the cc is zero
(as many suspected until recently), we will be left with this incremental value coming from the
topology or BCs. This sort of two-step approach to the cc is becoming more and more popular
recently as a way to try to solve this very difficult issue [25]. We have seen, using different
examples, that this value acquires in fact the correct order of magnitude—corresponding to
that coming from the observed acceleration in the expansion of our universe—under some
reasonable conditions. We put forward a quite simple and primitive idea (but, for the same
reason, of possibly far reaching consequences), related with the global topology of the universe
[26] and in connection with the possibility that a faint scalar field pervading the universe could
exist. Fields of this kind are ubiquitous in inflationary models, quintessence theories and
the like. In other words, we do not pretend to solve the old problem of the cc, not even to
contribute significantly to its understanding, but just to present simple and usual models which
show that the right order of magnitude of (some contributions to) ρV which lie in the precise
range deduced from the astrophysical observations are not difficult to get. To say it in different
words, we only address here the ‘second stage’ of what has been termed by Weinberg [21] the
new cc problem.

5. Vacuum energy contribution in different models

5.1. Simple model with large and small compactified dimensions

We assume the existence of a scalar field extending through the universe and calculate
the contribution to the cc from the Casimir energy density of this field, for some typical
boundary conditions. Ultraviolet contributions will be safely set to zero by some mechanism
of a fundamental theory. Another hypothesis will be the existence of both large and small
dimensions (the total number of large spatial coordinates being always three), some of which
may be compactified, so that the global topology of the universe will play an important role.
There is a quite extensive literature both in the subject of what is the global topology of spatial
sections of the universe [26] and also on the issue of the possible contribution of the Casimir
effect as a source of some sort of cosmic energy, as in the case of the creation of a neutron
star [27]. There are arguments that favour different topologies, as a compact hyperbolic
manifold for the spatial section, what would have clear observational consequences [28].
Other interesting work along these lines was reported in [29] and related ideas have been
discussed very recently in [30]. However, we differ from all those in that emphasis is put now
in obtaining the right order of magnitude for the effect. At the present stage it has no sense
to consider the whole amount of possibilities concerning the nature of the field, the different
models for the topology of the universe, and the different BCs possible, with its effect on the
sign of the force too. This is left to a second, more detailed analysis. From the previous results
[3] we know that the range of orders of magnitude of the vacuum energy density for the most
common possibilities is not so widespread and may only differ by at most a couple of digits.
This will allow us, both for the sake of simplicity and universality, to deal with two simple
situations, corresponding to a scalar field with periodic BCs, or spherically compactified.
As explained in [31], most cases with usual BCs reduce to those from a mathematical
viewpoint.

For the lack of space we will not describe this model in detail here (this has been
done elsewhere [32]). Suffice to say that it can be proven that the contribution of the
vacuum energy of a small-mass scalar field, conformally coupled to gravity, and coming
from the compactification of some small (2 or 3) and some large (1 or 2) dimensions—with
compactification radii of the order of 10–1000 the Planck length in the first case and of the
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order of the present radius of the universe, in the second—leads to values that compare well
with observational data, in order of magnitude, with the exception of the sign —which turns
out to be opposite to that needed to explain negative pressure. To deal with this crucial issue,
we consider the two following classes of models.

5.2. Braneworld models

Braneworld theories may hopefully solve both the hierarchy problem and the cc problem. The
bulk Casimir effect can play an important role in the construction (radion stabilization) of
braneworlds. We have calculated the bulk Casimir effect (effective potential) for conformal
and for massive scalar fields [33]. The bulk is a five-dimensional AdS or dS space, with two
(or one) four-dimensional dS branes (our universe). The results obtained are consistent with
observational data.

For the case of two dS4 branes (at L separation) in a dS5 background (it becomes a one-
brane configuration as L → ∞), for the Casimir energy density and effective potential, for a
conformally invariant scalar-gravitational theory S = 1

2

∫
d5x

√
g[−gµν∂µφ∂νφ + ξ5R

(5)φ2],

ξ5 = −3/16, with R(5) the curvature and ds2 = gµνdxµ dxν = α2

sinh2 z

(
dz2 +d2

4

)
the Euclidean

metric of the five-dimensional AdS bulk, d2
4 = dξ 2 + sin2 ξ d2

3—with α being the AdS
radius, related to the cc of the AdS bulk and d3 the metric on the 3-sphere— we obtain what
follows. For the one-brane Casimir energy density (pressure), we get

ECas = h̄c

2LR4
ζ

(
−1

2

∣∣∣∣L5

)
= − h̄cπ3

36L6

[
π2

315
− 1

240

(
L

R

)2

+ O
(

L

R

)4
]

, (5)

which is about ten times larger than the ordinary Casimir effect: ECE = − h̄cπ2

240L4 (about
100 dynes cm−2 at 100 nm, although in different dimensions, so that the comparison
should be taken with care). For the one-loop effective potential, we obtain V =

1
2LVol(M4)

log det(L5/µ
2), where L5 = −∂2

z − �(4) − ξ5R
(4) = L1 + L4, and log det L5 =∑

n,α log
(
λ2

n + λ2
α

) = −ζ ′(0|L5). In the one-brane limit L → ∞,Kt (L1) ∼ L

2
√

πt
and

ζ ′(0|L5) = 1
3R

[
ζH

(−4, 3
2

) − 1
4ζH

(−2, 3
2

)] = 0. And the small distance expansion for the
effective potential yields (up to an overall factor)

ζ ′(0|L5) = ζ ′(−4)

6

π4R4

L4
+

ζ ′(−2)

12

π2R2

L2
+

1

24

[
ζ ′
H (−4, 3/2) − 1

2
ζ ′
H (−2, 3/2)

]
ln

π2R2

L2

+
ζ ′(0)

6

[
ζ ′
H (−4, 3/2) − 1

2
ζ ′
H (−2, 3/2)

]
+

1

24
ζ ′
H (−4, 3/2)

+
1

36

[
1

8
ζ ′
H (−4, 3/2) − 1

3
ζ ′
H (−6, 3/2)

]
L2

R2
+ O

(
L4

π4R4

)

� 0.129 652
R4

L4
− 0.025 039

R2

L2
− 0.002 951 ln

R2

L2

− 0.017 956 − 0.000 315
L2

R2
+ · · · . (6)

On the other hand, the effective potential for the massive scalar field model is obtained
to be V = 1

2LVol(M4)
log det(L5/µ

2), L5 ≡ −∂2
z + m2l2 sinh−2 z − �(4) − ξ5R

(4) = L1 + L4

(AdS), L5 ≡ −∂2
z + m2 cosh−2 z − �(4) − ξ5R

(4) = L1 + L4 (dS). For the small mass limit
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(with L not large), it yields

ζ ′(0|L5) � aρ + a2ρ2

48
− π2

144

{
aρ2

2
+

[
2ζ ′(−4, 3/2) − ζ ′(−2, 3/2)

]
ρ

}

− π4

4370
[2ζ ′(−4, 3/2) − ζ ′(−2, 3/2)]ρ2 + O(m6),

a ≡ π2R2

L2
, ρ ≡ m2l2

π2

tanh(L/2l)

L/2l
, (7)

while for the large mass limit (with L not small), it is

ζ ′(0|L5) = −4m2l3

3R
arctan(sinh L/2l)

sinh(L/2l)
+ · · · , (8)

which is now non-zero (unlike in previous calculations, which turned a vanishing value) and
can fit the observed order of magnitude under appropriate conditions.

5.3. Supergraviton theories

Finally, we have also computed the effective potential for some multi-graviton models with
supersymmetry [34]. In one case, the bulk is a flat manifold with the torus topology R×T3, and
it can be shown that the induced cc can be rendered positive due to topological contributions
[35]. Previously, the case of R4 had been considered. In the multi-graviton model the induced
cc can indeed be positive, but only if the number of massive gravitons is sufficiently large,
what is not easy to fit in a natural way. In the supersymmetric case, however, the cc turns out
to be positive just by imposing anti-periodic BC in the fermionic sector. An essential issue in
our model is to allow for non-nearest-neighbour couplings.

The multi-graviton model is defined by taking N copies of the fields with graviton hnµν and
Stückelberg fields Anµ and ϕn. Our theory is defined by a Lagrangian which is a generalization
of that in [36]. It reads

L =
N−1∑
n=0

[
−1

2
∂λhnµν∂

λhµν
n + ∂λh

λ
nµ∂νh

µν
n − ∂µhµν

n ∂νhn +
1

2
∂λhn∂

λhn

−1

2

(
m2�hnµν�hµν

n − (�hn)
2
) − 2

(
m�†Aµ

n + ∂µϕn

)(
∂νhnµν − ∂µhn

)
−1

2

(
∂µAnν − ∂νAnµ

)(
∂µAν

n − ∂νAµ
n

)]
. (9)

� and �† are difference operators, which operate on the indices n as �φn ≡ ∑N−1
k=0 akφn+k,

�†φn ≡ ∑N−1
k=0 akφn−k,

∑N−1
k=0 ak = 0, where ak are the N constants and the N variables φn can

be identified with periodic fields on a lattice with N sites if the periodic boundary conditions,
φn+N = φn are imposed. The latter condition assures that � becomes the usual differentiation
operator in a properly defined continuum limit.

In the case when anti-periodic boundary conditions are imposed in the fermionic sector,
the situation changes completely with respect to the bosonic one, since the fermionic mass
spectrum becomes quite different. The one-loop effective potential in the anti-periodic case
is calculated to be

Veff = M4
1

4π2

(
ln

M2
1

µ2
R

− 3

2

)
− 4M4

1

3π2

∫ ∞

1
duG(M1ru)(u2 − 1)3/2 − M̃4

0

4π2

(
ln

M̃2
0

µ2
R

− 3

2

)

+
4M̃4

0

3π2

∫ ∞

1
duG(M̃0ru)(u2 − 1)3/2 − M̃4

1

8π2

(
ln

M̃2
1

µ2
R

− 3

2

)
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+
2M̃4

1

3π2

∫ ∞

1
duG(M̃1ru)(u2 − 1)3/2 = − m4

36π2
log

216

39
+ VT , (10)

where VT is the sum of all the topological contributions. Note that the first term on the rhs is
always negative, but the whole effective potential can be positive, due to the presence of the
topological term. Thus, in the regime mr � 1 one has VT ∼ 1/8π2r4, that is, Veff > 0 for
mr < [(2/9) log(2163−9)]−1/4 ∼ 1.4, while in the opposite regime, mr  1; we can see that
the topological contribution (although still positive) is negligible, and the effective potential
remains negative. A change of sign in the correct region is obtained.

For the torus topology we have got the topological contributions to the effective potential
to have always a fixed sign, which depends on that BC imposes. They are negative for periodic
fields and positive for anti-periodic fields. But topology provides then a mechanism which, in
a natural way, permits to have a positive cc in the multi-supergravity model with anti-periodic
fermions. The value of the cc is regulated by the corresponding size of the torus. We can
most naturally use the minimum number, N = 3, of copies of bosons and fermions, and
show that—as in the first, much more simple example, but now with the right sign!— within
our model the observational values for the cc can be matched, by making quite reasonable
adjustments of the parameters involved. As a byproduct, the results that we have obtained [35]
may also be relevant in the study of electroweak symmetry breaking in models with similar
type of couplings, for the deconstruction issue.
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